Website Search
ID 16962

DNA Isolation Step 2: Extracting the DNA

Jason Williams, DNA Learning Center, shows how to extract DNA from an animal or plant sample.
Now that you have your samples in their individual and labeled tubes, you’re ready to begin with the extraction. What we’ll need to do is add 100 μL of the nuclei lysis solution, so I’m going to use my blue pipette set to 100 μL, and always I want to use a fresh tip to add the solution every time. My lysis solution is already on ice, so I’ll carefully get 100 μL, cap that back up, and add that 100 μL to my first sample. Once you’ve added the solution to the sample, you can take a clean pestle and start grinding the sample forcefully for about one minute. Once you’ve ground the sample thoroughly, and in some cases you may notice that the solution changes color – chlorophyll might be released with plants, with animals you may see some color change – just grind it until you hopefully see some of that color comes out; that means that you’ve done a good job. Then add the remaining 500 μL of the nuclei lysis solution. Make sure to mix after you’ve added that last 500 [μL]of the nuclei lysis solution, and add this to the heat block. Once your samples have incubated for 15 minutes at 65 degrees, you have to add the RNase solution. The RNase solution contains RNase enzyme, and that enzyme is going to actually break down a lot of the RNA that’s present in the solution, so that when we actually precipitate nucleic acids, the majority of what we’re going to get back is DNA. I’m taking my P10, and I’ve set it to 3 μL, and you want to take a fresh tip, take up 3 μL of the RNase solution, and add that to each one of the tubes. Once you’ve added it to the tube, you want to shake the tube and then place it at 37 degrees; so if you have another heat block place it in that one, if you need to let this heat block cool just cool it to 37 degrees and then place this to incubate for an additional 15 minutes.
DNA, barcoding, lab, protocol, isolate, isolation, specimen, sample, pipette, extract, extraction, centrifuge, DNALC, CSHL, DNA Learning Center, Cold Spring Harbor Laboratory, high school, middle school, experiment, Urban Barcode Project, gene, genetic
Creative Commons License This work by Cold Spring Harbor Laboratory is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Related content:

17003. DNA Barcoding Protocol: Isolating DNA
A DNALC instructional video showing the steps involved in isolating DNA
16959. DNA Barcoding Protocol: Isolating DNA
A DNALC instructional video showing the steps involved in isolating DNA
16961. DNA Isolation Step 1: Preparing the Sample
DNA Isolation - Step 1 of 4: Preparing an animal or plant sample
16963. DNA Isolation Step 3: Precipitating the DNA
DNA Isolation - Step 3 of 4: Precipitating DNA
16979. DNA Barcoding
An animation introducing the concept of a DNA barcode, how it works, and what type of research questions DNA barcoding can answer.
16974. Urban Barcode Project: 2012 Participant Reflections
Students and teachers who participated in the 2012 Urban Barcode Project reflect on the experience, including the challenges and rewards of doing independent student research.
16975. Urban Barcode Project 2012: Honorable Mention Presentation: U.S. Customs
UBP 2012 Finalist presentation: DNA Barcoding Exotic Agricultural Pests Seized by the U.S. Customs and Border Protection
16970. Urban Barcode Project 2012: 4th Prize Presentation: Cimex lectularius
UBP 2012 Finalist presentation: Barcoding Cimex lectularius
16968. Urban Barcode Project 2012: 3rd Prize Presentation: Silversides
UBP 2012 Finalist presentation: Assessing Genetic Differences Among Atlantic Silversides in New York
16966. Urban Barcode Project 2012: 2nd Prize Presentation: Fungus Amongus
UBP 2012 Finalist presentation: The Fungus Amungus
Cold Spring Harbor Laboratory
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving