Website Search
ID 1712

Mouse (Mus musculus)

Description:
Mice are small, easy to keep, and complete a generation in only ten weeks. They are also rather closely related to human beings.
Transcript:
As a mammal, a mouse is rather closely related to a human being. However, it is small, easy to keep, and completes a generation in only ten weeks. It shares more genes, anatomy, and physiology with us than the simpler model systems – bacteria, worms, or flies. Many laboratory strains of mice have been inbred to be genetically identical, which makes it easier to see the effects of an experimental treatment or change in a single gene. A method called homologous recombination allows scientists to precisely replace virtually any mouse gene with a mutated copy of the same gene or a related gene from another organism. A “transgenic” mouse is usually created by injecting a foreign gene into embryonic stem cells and then implanting the manipulated embryos into a surrogate mother. Transgenic mice carrying human disease genes are models for Huntington’s disease, sickle cell anemia, Alzheimer’s disease, and many cancers.
Keywords:
mouse, mus musculus, mice, model, system, organism, transgenic, recombination
Creative Commons License This work by Cold Spring Harbor Laboratory is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Related content:

548. Model Center
Model organisms share with humans many key biochemical and physiological functions that have been conserved (maintained) by evolution.
15566. Model organisms (yeast, bacteria, mouse, fruit fly)
Model organisms such as yeast, bacteria, the mouse and the fruit fly are used by researchers to study biological systems. The genomes of these organisms have been mapped and sequenced.
909. Teacher Feature
Teacher Feature is a collection of lessons for use in the classroom. Each lesson includes teacher pages, standards correlations, and student worksheets.
16856. Animation 41: DNA is only the beginning for understanding the human genome.
Mario Capecchi describes proteomics; the large-scale study of protein structure and function. Brian Sauer explains gene knock outs.
1207. Genes to Cognition Continuum
Professor Seth Grant outlines one way in which the Genes to Cognition Research Programme uses model organisms to study learning and memory in humans.
15701. Mouse
image of a mouse.
1259. Animal Models - Schizophrenia Genes
Professor David Lewis outlines how model organisms such as mice can help uncover the interplay of the genetic components in schizophrenia.
15066. Advantages of mouse models, Mario Capecchi
Mouse researcher Mario Capecchi talks about the similarities in mammalian anatomy and physiology.
897. Gene knockout in mice
This method uses homologous recombination to disable a gene of interest to produce a genetic knockout.
2337. Optical Imaging of Plaque Formation
Doctor Brian Bacskai discusses how his group uses optical image to record plaque formation in Alzheimer's-type mice.
Cold Spring Harbor Laboratory
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving