INTRODUCTION

Although the DNA from different individuals is more alike than different, there are many regions of the human chromosomes that exhibit a great deal of diversity. Such variable sequences are termed “polymorphic” (meaning many forms) and provide the basis for genetic disease diagnosis, forensic identification, and paternity testing. In this experiment, polymerase chain reaction (PCR) is used to amplify a DNA sequence from chromosome 16 to look for the insertion of a short nucleotide sequence called Alu within a noncoding region of the chromosome.

The Alu family of repeated DNA sequences are found throughout primate genomes. Alu elements are approximately 300-bp in length and derive their name from the presence of two recognition sites for the endonuclease AluI within the Alu element sequence. Over the past 65 million years, the Alu sequence has amplified to about 1,000,000 copies, comprising an estimated 10% of the human genome. Many of these Alu insertions are only found in humans. Some of these are so recent (1-2 million years ago) that they are not fixed in human populations.

In 1994, Batzer et al. (Proc. Natl. Acad. Sci. U.S.A., vol. 91, pp.12288-12292) described a human-specific insertion of an Alu element located at a region (or locus) on chromosome 16 called PV92. This locus is dimorphic; meaning that the Alu insertion is present in some individuals but not in others. The presence of the Alu sequence does not seem to affect the expression of any gene. As Batzer et al. did, we will use polymerase chain reaction (PCR) to screen for the presence of the PV92 Alu insertion. Oligonucleotide primers, flanking the insertion site, were selected to amplify a 715-bp fragment when the Alu insertion is present and a 415-bp fragment when it is absent. Each of the three possible genotypes — homzygote for the presence of the Alu insertion (715-bp fragment only), homozygote for the absence of the Alu insertion (415-bp fragment only), and heterozygote (715-bp and 415-bp fragments) — can be distinguished following electrophoresis in agarose gels.

The source of template DNA for amplification is a sample of several thousand cells obtained by saline mouthwash (bloodless and noninvasive). The cells are collected by centrifugation and resuspended in a solution containing the resin “Chelex,” which binds metal ions that inhibit the PCR. The cells are lysed by boiling and centrifuged to remove cell debris. A sample of the supernatant containing chromosomal DNA is mixed with Taq DNA polymerase, oligonucleotide primers, the four deoxynucleotides, and the proper buffer for the enzyme. Temperature cycling is used to denature the target DNA, anneal the primers, and extend a complementary DNA strand. The size of the amplification product(s) depends on the presence or absence of the Alu insertion at the PV92 locus on each copy of chromosome 16.

In order to compare the genotypes from a number of individuals, aliquots of the amplified sample and a DNA molecular ladder are loaded into the wells of an agarose gel. Following electrophoresis and staining, amplification products appear as distinct bands in the gel — the distance moved from the well is inversely proportional to the size of the DNA fragments. One or two bands are visible in each lane, indicating the genotype for an individual.
PROCEDURE

I. DNA Isolation by Saline Mouthwash

1. Pour 10 ml of the saline solution (0.9% NaCl) into mouth and vigorously swish for 30 seconds.
2. Expel saline solution into a paper cup.
3. Swirl to mix cells in the cup and use a micropipet to transfer 1 ml (1000 µl) of the liquid to 1.5 ml tube.
4. Place your sample tube, together with other student samples, in a balanced configuration in a microcentrifuge, and spin for 1 minute.
5. Carefully pour off supernatant into paper cup or sink. Be careful not to disturb the cell pellet at the bottom of the test tube. A small amount of saline will remain in the tube.
6. Resuspend cells in remaining saline by pipetting in and out. (If needed, 30 µl of saline solution may be added to facilitate resuspension.)
7. Use a micropipet to withdraw 30 µl of cell suspension, and add to tube containing 100 µl of Chelex. Shake well to mix.
8. Boil cell sample for 10 minutes. Use boiling water bath, heat block, or program thermal cycler for 10 minutes at 99°C. Then, cool tube briefly on ice (optional).
9. After boiling, shake tube. Place in a balanced configuration in a microcentrifuge, and spin for 1 minute.
10. Use a micropipet to transfer 30 µl of supernatant (containing the DNA) to clean 1.5 ml tube. Avoid cell debris and Chelex beads. This sample will be used for setting up one or more PCR reactions.

II. DNA Amplification by PCR

1. Use a micropipet with a fresh tip to add 19µl of the PV92 primer/loading buffer mix to a PCR tube.
2. Use a micropipet with a fresh tip to add 1µl of human DNA (from Part I) to reaction tube, and tap to mix. Pool reagents by pulsing in a microcentrifuge or by sharply tapping tube bottom on lab bench.
3. Label the cap of your tube with a number, as assigned by your teacher.
4. If the thermal cycler requires, add one drop of mineral oil on top of reactants in the PCR tube. Be careful not to touch the dropper tip to the tube or reactants, or subsequent reactions will be contaminated with DNA from your preparation. Note: Thermal cyclers with heated lids do not require use of mineral oil.
5. Store all samples on ice until ready to amplify. Program thermal cycler for 30 cycles according to the following cycle profiles. Each program may be linked to a 4°C cycle to hold samples after completing the cycle profile, but amplified DNAs also hold well at room temperature.

<table>
<thead>
<tr>
<th>Denaturing time and temperature</th>
<th>0 sec - 94°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealing/Extending time and temperature</td>
<td>25 sec - 70°C</td>
</tr>
</tbody>
</table>

III. DNA Analysis by DNA Chip Electrophoresis

1. Use a micropipet with a fresh tip to add 1µl of PCR sample into your assigned well of a DNA chip. Place the tip directly against the bottom of the well and depress the pipet to the first stop only to avoid bubbles.

2. Once all wells are loaded, place DNA chip into the Bioanalyzer. When the Bionalyzer recognizes the chip is in place, click the “Start” icon. Analyze results once available.